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Abstract. The Mittag-Leffler distribution has been studied extensively in the
past decade. The Mittag-Leffler distribution has been found to be useful in
a variety of applications. In this paper, we review the Mittag-Leffler distribu-
tion, and study various distributional properties and characterizations related to
the Mittag-Leffler distribution. We also study semi-Mittag Leffier Distribution,
Generalized positive Linnik distribution and other related distributions. We de-
rive some new results related to the distributional proper:ies of the semi-Mittag
Lefer Distribution. We also review the results related to estimation of param-
eters in Mittag-Leffler distribution and propose some new estimators for the
periodic function in the SML distribution using Empirical Laplace transform.
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1 Introduction

The Mictag-Leffler distribution is the distribution F with the Laplace transform

=
¢(z\)=f exp{—ﬁz}dF(r}:-L, 0<a<l, A>0.
0 1+ A=

It has received the attention of many researchers recently (see Christoph and
Schreiber, 2000; Kozubowski, 1994, 1998, 1999, 2000 a, b, 2001: 'Kozubowski
and Rachev, 1994, 1999; Lin, 1994, 1997, 1998, 2001; Jacques, Remillard and
Theodorescu, 1999; Remillard and Theodorescu, 2002; Jayakumar and Pillai,

1093, 1996; Pillai, 1990; Sabu George, 1984; Sandhya, 1991 a, b; Jayakumar,
1992; Gnedenko and Korolev, 1996).

Even though the Laplace transform ¢(A) =

; < ]
1+A00<a__1ha.:been

studied by many researchers in the past, it is Pillai {1990) who obtained the
distribution function of the same and observed that the distribution function is
in fact related to the Mittag- Leffler function and hence named the distribution
as the Mittag-Leffler distribution. Based on Mohan et al. (1993}, the Mittag-
L effler distribution can be called positive geometric right stable law. Also Pakes
(1992a, 1998) called the distribution as positive Linnik distribution. Lin (1998)
proved that the Mittag-Leffler distribution belong to the class of distributions
with complete monotone derivative. Pillai and Anil (1996) characterized the
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Mittag-Leffler distribution using integrated Cauchy functional equation. Fujita
(1993) generalized some results of Pillai (1990) and obtained characterization
of geometrically infinitely divisible distributions on (0, ~).

The Mittag-Leffler distribution has been found to be useful in a varietv
of applications. For example, Weron and Kotulski (1996) used the Mittag-
Leffler distribution to describe the Cole-Cole relaxation phenomena in Physics.
Jayakumar (2003) used the Mittag-Leffler distribution to model the rate of
flow of water in Kallada river, Kerala, India. Kozubowski and Rachev (1994;
discussed the applications of Mittag-Leffler distribution in modeling financial
data.

Semi-Mittag-Leffler distribution is a generalization of the Mittag-Leffler dis-
tribution and has been used by several authors. For example, Jayakumar and
Pillai (1993) used semi-Mittag-Leffler distribution to obtain the stationary so-
lution of a first-order autoregressive equation. Bunge (1996) explained the use
of semi-Mittag-Leffler distribution in the study of random stability.

The purpose of this study is to bring the works on the Mittag-Leffler dis-
tribution available in the literature together and to present some new results
on this distribution. In Section 2, we describe some properties of Mittag-LefRer
distribution. We review the results related to the semi-Mittag-Leffler distribu-
tions in Section 3. In Section 4, we review the results on estimation related
to the Mittag-Leffler distribution. and also present some new results related
to the estimation in the semi-Mittag-Leffler distribution. Other distributions
such as generalized positive Linnik laws, which are related to the Mittag-Leffler
distribution are considered in Section 5 along with their relationships. The pa-
per ends with concluding remarks in Section 6, in which we outline some open
problems.

2 Mittag-Leffler Distribution

In this Section we discuss the genesis of the Mittag-Leffler distribution and study

the basic distributional properties and the characterization results concerning
the ML distribution.

2.1 Genesis and Definition

Pillai (1990) considered the Laplace transform ¢()) = -1—_:—’\—;,0 <a<1and
showed that ¢()) is the Laplace transform of a probability distribution. He ob-
tained an expression for the distribution function having the Laplace transform

#(A), and is given below:

1

=m;,05051,,\>0:’3theLap£ace

THEOREM 2.1. The function, ¢(A)
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transform of a positive valued random variable with distribution function

Now we give the Definition of the Mittag-Leffler distribution.

DerFINITION 2.1, A random rariable X' on (0,2} is said to huve the Mittag-
Leffler (ML) distribution and write X ‘(—i M L(c) if its distribution function is

1 (k= I]ILO

(= _
Z F{1+k] , 0<a<l.

Note that Fj(r) is exponential distribution. Kotz and Steutel (1938) and
Huang and Chen (1989) obtained some characterizations of F,,(x). Piliai (1990)
showed that F,(r) is infinitely divisible. Kozubowski (2002) observed that the
ML distribution in Bondesson et al. (1996) is different from F,(r) and gave an
interpretation why the Bondesson et al. (1996) ML distribution is not infinitely
divisible. Kozubowski (2000) showed that the ML random variable .\ having

distribution function F,(z) admits the representation X = Z1Wa/® where Z
and ¥, are independent , Z is standard exponential, while 117, is a positive
sin(am

andom variable with densit I) = 3
random varnable w nsity fa(z) am (2 + 2rcosan + 1)

1998; Kozubowski, 1998).

We discuss the distributional properties and characterizations relating to
the ML distributions below.

(see also Pakes,

2.2 Distributional Properties

Lin (1998) obtained the following results on the ML distribution.

THEOREM 2.2. For each a € (0,1}, Fo(z) € M, the class of dzstnbuteons with
complete monotone derivative.

THEOREM 2.3. Let F, (z) be the distribution function of a random variable
X4 (t) having Laplace transform

1
B er—r— < .
Sat(N) ATy 0<a<1,A>0
Then
(i) Fo(z) is slowly varying at infinity.

. 1 z° ¢
(ii) F,i(z) ~ T+ at) (1+$a) as r — 0+



54 MITTAG-LEFFLER DISTRIBUTIONS  JAYAKUAMAR & SURESH

THEOREM 2.4. Let a € (0,1) and t > 0. Then

- p/a)l
i) E{X2(t)} = L r?{i}p)(;(ﬁ:)pfa)

(i1) E{X2(t)} = if p<—ator p>a.

ifp € (~at.at);

Lin (1998) has used the above results to correct some inverse Laplace trans-
forms given in the literature.

Pakes (1992a) characterized gamma mixtures of stable laws. For further
characterizations of ML laws, see also Kakosyan et al. (1984) and Yeo and
Milne (1989). Pillai (1990) proved that the ML distribution with parameter
a is normally attracted to positive stable law. Fujita(1993) generalized the
results of Pillai (1990) to obtain characterizations of geometrically infinitely
divisible distributions on [0,20). These results are summarized in Theorem 2.4
and Theorem 2.3. .

If f is a non-zero Bernstem function, then there exists a unique positive
measure W[0, 00) such that ;(.’.} jo e~ %W (ds), z > 0. Let W™*dz denote
the n times convolution measure of W(dz). Define

-3 (=A)"Wn*dz, > 0.
e = { g TV 220

THEOREM 2.5. For every A > 0, Uy is an infinitely divisible distribution with
the Laplace t e
e Laplace transform T 700

THEOREM 2.6. Let A > 0. For every 0 < p < 1, Ua(z) = 32,(p(1 -
p)i- 1U‘{}p( z),z > 0. Then Uy is geometrically infinitely divisible.
Jayakumar and Pillai (1996) considered the characterization of ML laws and

showed that within'the class of infinitely divisible laws with positive support, the
ML distribution F, is the umque distribution function F satisfying the relation

S(A) = exp {/U Ei(_;{?)__ (1- F(z))d:r}, A>0 (2.2.1)

where ¢ denotes the Laplace transform of F. Lin (2001) obtained an extension
of this result and is given below.

THEOREM 2.7. Let € [0,1] be a constant and let X be a non-negative random
variable with distribution function F and Laplace transform ¢. Assume further
that P(X =0) < 1. Then (2.2.1) holds if and only if F = F, 5 for some § > 0,
where F, s is the distribution function having Laplace transform 1=z, 0<
a<l

Lin (2001) obtained another characterization of ML distribution in terms of the
Pareto law.
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THEOREM 2.8. Let Z have the stundard ecponential !a.v and for a € (0. 1], let
T, have the Paretn type [ law
1
) =1 , t>0.
Pl =1= 105z >0

Further, assur‘ze thet X is a positive random variable independent of Z. Then
(a) - . é T, if and only if X has the ML distribution F,,

{h) T L T, if and only if X has the ML dustribution F,,

Next, we define the class I distributions and study some resules related to the
class L distributions.

DEFINITION 2.2. A random variable X with Laplace transform o(\) is in class
L if for every ¢, 0 < ¢ < 1, there erists a Laplace transform ¢.(\) such thut
o(A) = o(cA)o.(A)

Sabu George ane Pillai (1931) derived the following prope rties of ML dis-
triburions.

. .
THEOREM 2.9. The distribution with L.T. T O0<a<l, A>0 belongs
to class L.

THEOREM 2.10. Suppose o(A) be a completely monotone function. &(0) = 1
and o{A) + 6(1/A) and Then o()\) = -1— where L(A) is slowly varying

1+ AL(A)
both at zero and infinity.

Kotz and Steutel (1938) proved that X, d LX) + .X3) if only if the distri-
bution of X} is exponential and generalized the result as follows:
THEOREM 2.11. Let X', Xy and U be independent, U has o uniform law on

0.1} and X, £ Xy, Then X, £ 0Va(X, + Xa). if and only if X\ is ML.
Some further resules on ML distributions are given below (see Pillai and
Anil. 1996 and Jayakumar and Pillai, 1996).

Turorext 2,12, The family of ML distributions coinrides with the fumily.of
geometric strictly stable distributions with support from R™.

THEOREM 2.13. Suppose Xy and X are i.id. as F(r) with density function
flr) and by and bs are constants such that 0 < by.by < 1 und by + by = 1.
0<a< 1. Then F(r) is ML if and only if b, X| + b\, -—d— X+ X, where \
has distribution function F(z/by) + F(z/bs) — F{x/b)F(r/b,).

THEOREM 2.14. Let F(x) be an infinitely divisible distribution with positive
support and let P(r) be the spectrum function given by

In(o(t)) = ]x e = 1o,
0 I
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Then F(z) is ML if and only if

1dP
F(I)"l-a&;-

Kozubowski and Rachev (1999) defined a re-parameterization of the ML distri-
bution.

DEFINITION 2.3. For 0 < a < 1 and ¢ > 0, the probability distribution on
(0, oc) with the Laplace transform,

1
¢O.ﬂ'(’\)_ 1.5.60)‘0' AZO
is called ML and is denoted by ML, ,.

Kozubowski and Rachev (1999) noted that the density functmns of ’\IL distri-
butions are completely monotonic on (0, c0).

2.3 ML Processes

Here, we consider the Mittag Leffler process.

DEFINITION 2.4. The stochastic process {X(t),t > 0} having stationary in-
dependent increments with X(0) = 0 and X(1) having the Laplace transform

p(A) = 1 +1A“’ 0<a<1 A>0is called the ML stochastic process.

Pillai (1990) gave the above Definition and obtained the following result.

THEOREM 2.15. The ML stochastic process X (t) has the distribution function,
fort >0,
i (=1)T(t + k)zo(t+¥)

For(z) = LT+ alt + k)"

THEOREM 2.16. Fa,;'fz), has the following property, for 0 < a < 1

Fo(z) = /0 ” Sus(2)Glds),

where S, 4 (z)is the distribution function of the stable process with Laplace trans-
form exp {—tz®} and G,(z) = %f y*"le Vdy.

0
Pillai and Sabu George (1984) defined a Laplace - & process given in Definition
2.5 and proved a result (given in Theorem 2.17) related to the same.
DEINITION 2.5. A nonnegative valued stochastic process X(t) is said to be

Laplace -a process if its Laplace transform is given by 1+tra’
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THEOREM 2.17. A Laplace-c process directed by a stable 3 process leads to
Laplace - a3 process.
For further properties of Laplace a process, see Pillai (1985).

Pillai and Anil (1096) defined a “Process” to mean a non-degenerate stochas-
tic process {Y'(¢). ¢ > 0} with ¥ (0) = 0, which is homogeneous, continuous in
probability and has independent increments, and proved the following theorems.

1
TezOREM 2.18. Let Y(t), t > 0 be a process with Y (t) > 0. Then / td} (t)
has the same distribution as Y(a) for some a > 0 if and only if thg Laplace
Transform (LT) of Y’ (1) is of the form exp {—cA®}, A >0, for some o € (0.1)].
Let T be a random variable independent of Y (t) and with standard exponential

I
tdY (t
distribution function. Then, S = fD—.'I*#

exponent c.

has a ML distribution function with

THEOREM 2.19. Let Y'(t), t > O be a stable process with Elexp {=AY ()} = exp
{~ctA®} for all X >0, for some ¢ > 0, for all t 2 0, for some a € (0,1] and
T a positive random variable independent of Y'(t). Then T has an erponential

JF ey (t)

distribution if and only if S = has ML distribution function.

THeEOREM 2.20. Let {X(t),t > 0} end {¥Y(t),t > O} be two non-negative
processes. Assume that the LST of X(1) is given by, 170 t > 0, where
n(t) is the logarithm of the LST of ¥ (1). Then X:(ﬂt) is an ML process with
exponent a if and only if the stochastic integm!f R(t)dY (t) has the same
distribution as Y (a), where R(t),t >0 is a strictjiy odccreasing survival function

on [0,oc) and a > 0 is the unique solution of/ R*(t)dt = a.
0

Corollary 2.1. Let T be a random variable having un:t exponential density
function. Then under the conditions of the above theorem, X(t) 1s a ML process
with exponent a if and only if the randomn variable Y = E7(Y (t)) has the same
distribution as Y (1/a). _

Jayakumar and Pillai (1993) introduced first order autoregressive (AR(1)) Mittag-
Leffler process. Pillai and Jayakumar (1994) characterized pth autoregressive
processes using specialized class L property.

Aly and Bouzar (2000) considered the AR(1) equation

Xn=pXno1 +€0,n=0,%1£2,...

with all the variables being R+ valued. They found the distribution of {en}
when X,'s have the Laplace transform

1

= —_—— ¥ < 1.
H(u) (1+m_r)r,r>0,c>0,0< y <
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Under stationarity assumption the innovation equation ¢, is given by

N .
en = (al)W5,

where {U;} arei.id. tf((}, 1) random variables, N is Poisson with mean —r~{n{a)
and the ¥;’s are i.i.d. with common LT

1
¢u) = ;oo €20 0<y <.

- 2.4 ML Generator

Here, we describe a method of generating samples from ML distribution.

Geometric stable (GS) distributions approximate (normalized) sums of i.i.d
random variables, Sy = X; + X5 + ... X, where the number of terms has a
geometric distribution with mean 1/p and p — 0. In one dimension, GS laws
form a four parameter family given by the characteristic function

1

Y = T i wa s ® = iat 241
mhere 1 —ifBsgn(z) tan(ra/2) fa#l
_ — if3sgn(z) tan(ra/2), ifa _
wa,8(z) = { 1+i82/xsgn(z)loglizll, ifa=1 (2.4.2)

The parameter a € (0,2] is the index of stability determining the tail of
the distribution, 8 € (-1, 1) is the skewness parameter and y € R and o > 0
controls the location and scale, respectively. Let GSa(o,, i) denote the GS
distribution with characteristic function (2.4.1). For properties of GS distribu-
tions, see Kozubowski and Rachev (1999), Rachev and SenGupta (1992, 1993),
Ramachandran (1997). Kozubowski (2000b, 2001), Jayakumar et al. (1995)
discussed the generation of GS random variables.

Let us denote ML, sas the ML random variable having Laplace transform

¢a,o(}\) = :

1+ g2)e’ )\20, O<a<l,o>0 (243)

Clearly for a = 1, (2.4.3) is the Laplace transform of an exponential distribu-
tion with mean o, while for 0 < a < 1, (2.4.1) is the Laplace transform of

wayl/e ) .
GS, | o [cos (—2—-)] , 1,0 if0 < a < 1 distribution. Hence, we have the
following relation between ML, , and GS, (o, 3, 1) distributions:
ML GS.(0,1,0), ifa =1 54
Thes TGS, (cr [cos(%}]”a,l,[}), if0<a<l Ee)

Note that oY ML, , if Y ML, (o is a scale parameter).
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Kozubowski and Rachev (1999) obtained the following representation of
\[L,, random variable. (See also Jayakumar et. al., 1993).

Turoura 221 Let0<a <o’ <1and p= % < 1. Let IV be a nonnegative
random varichle with density

stn(mp)
aple? + 2zeos(mp) + 1)

gu(r) = (2.4.3)

and let My 5 be a ML random variable (2.4.3), independent of V. Then. a ML

random variable A, . admits the representation M, , ‘——i My I Ve,

The representation given in the above theorem can be written in terms of
densities. In particular, taking the largest values of e leads to the expressions
for ML densities and distribution functions that are particularly convenient for
numerical approximation.

Prorosttion 2.1, For any 0 < a < 1, the density and distribution functwn of
a ML, .. d:strzbutwn have the representations
sinwee [ yre Y
xr) = - dy,z >0
farele) T ﬂ Y2 + 1+ 2y2cosma g
and
sy = B a—=1_.,—1y
sinweo y* e
Fiuyi(ry=1- / - dy.z >0
aelr) ™ Jo ¥+ 14+ 2y%costar s
respectively.

Selected densities of ML distributions calculated from the above represen-
tation arc presented in Figure 2.4.1.

The relation between the Linnik and ML distribution via stable law is given
below.

Let 5,(, 3. ) denote a stable law corresponding to characteristic function
o(t) where, logo(t) = 1 — ﬁ, ¥(t) as in (2.4.1). Then every Linnik distribu-
tion L, having characteristic function, ¥{t) = mL—ItF is a scale mixture of
Sar(m'/?¢.0,0) where m has a ML, ), distribution.

For various representations of GS laws, see Kozubowski (1998, 2000a),
Kozubowski and Podgorski (1994).

THEOREM 2.22. Let0<a<a' <2andp=2 < 1. Let Xy S4(0,0,0)

and My, ML, be independent. ThenY,, Lo, admits the representation

Yao €MLY X, ,

REMARK 2.1. By taking o' = 2, it can be seen that L, , is a scale mizture of
normal distributions, end consegquently, is conditionally Gaussian.

Now we turn to simulation of ML distributions (2.4.3). The procedure is
based on representation (2.4.5) with a’ = 1, showing that a ML distribution is



.50 MITTAG-LEFFLER DISTRIBUTIONS  JAYAKUMAR & SURESH

a scale mixture of exponential distributions. An algorithm for generating ML
random variate is given below.

Algorithm: A ML, , generator.
Generate random variate Z from ML, distribution(standard exponential)
Generate uniform[0, 1] variate U, independent of Z.

Set p + a

Set W « sin(mp)cot(npU) — cot(wp)
Set Y « gZIWl/a

Return Y.

To illustrate this algorithm, Kozubowski (2001) simulated ML distributions and
compared the resulting histograms with their densities.

T T T T T
L] as LE- "y 0 13 EL]

Figure 2.4.1 : Densities of Mittag-Leffler distributions
with ¢ =1 and a = 0.3(0.1)1.

3 Semi-Mittag-Leffler distribution

3.1 Definition and properties

The semi-Mittag-Leffler distribution is defined as follows:

DEFINITION 3.1. A distribution with positive support is said to be semi-Mittag-
Leffler and write X g SM L(a,p) if its Laplace transform @(A) is of the form

1

(3.1.1)
where 1()\) satisfies the functional equation

. %r}(p”a)‘},o <p<l0<a<l (3.1.2)
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The solution of the equation (3.1.2) is derived in Kagan, Linnik and Rao (1973,
p.163) and is given in the following Lemma. For the relation between Cox
processes and SML distribution, see Sandhya (1991a, b).

LemMaA 3.1. The solution of the functional equation (3.1.2) is n(A\) = A*h()\)
where h()) is periodic in In)\ with period 2’;“.

For an example of h{)) function, see Jayakumar and Pillai (1993). The func-
tion n(A) of the form (3.1.2) have been studied by Dubuc (1990) and Biggins
and Bingham (1991). Jayakumar and Pillai (1993) developed a first order au-
toregressive SML process and studied its properties. Jose and Pillai (1996) .
introduced a new autoregressive model with ML marginals as a generalization
of the NEAR(1) model of Lawrance and Lewis (1981). They have further ex-

tended the same to obtain a new class called new first order autoregressive SML
process.

Here, we present some new results related to the SML distribution.

THEOREM 3.2. The funct:on oA = "-T-TwTX" where 77(\) satisfies the equation

n(A) = %n{p”ai\},ﬂ <p<l0<a<l (3.1.3)
Proof: Consider the function g(\) = “_ 5. A > 0. Since g(A) is the Laplace
transform of unit exponential distribution, it is completely monotone. Consider
the function n(A) = e~ where n()) satisfies (3.1.3). By Ramachandran and
Rao (1968), h(A) 1s 1nﬁmtely divisible, being the Laplace transform of a semi-
stable random variable. By Feller (1966), p. 425, n(A) has complete monotone
derivative. Hence, g(n(A)) = Tm is completely monotone. Also g(n(0)) = 1.
. Therefore, ‘1“4%[3\_; is the Laplace transform of a probability distribution. This
completes the proof.
In Theorem 3.3 below, we decompose the SML law in terms of the semi-
stable law. We omit the proof of the theorem as it follows easily.

"~ THEOREM 3.3. If X and Y are independent random variables such that X
has exponential distribution with unit mean and Y has semi-stable distribution

having Laplace transform e™™A) | where n{)\) satisfies (3.1.3), then X1/oy Ly \
where Z L] SML(a,p).

REMARK 3.1. Since exp {n())}is the Laplace transform of an mﬁﬁttely divisible
distribution, the canonical representatwn of n(A) in terms of the Levy spectrum

e 0 Az
= [ —au ).

But r;r()t) satisfies (3.1.3). Hence, on simplification we get

o0

=S p—nno(P”"f\)

n==—o0
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where

S
no(x) =f ——E——d:'u’(u)v
P

1/a
Now we consider the renewal process {S,} with semi-Mittag-Leffler waiting time
distribution defined by

Sg = 0, Sn - Zn:-xis
i=1

where X;'s are i.i.d. SML(a,p).

THEOREM 3.4. The ezpected number of epochs of the renewal process defined
1
by (3.1.4) is given by U(z) having the Laplace transform ——

n(A)’
Proof : The expected number of renewals is given by
=0
. Uz) =Y F™(2),
n=1

where F(x) has Laplace transform n_(l)x_i Taking Laplace transform on both sides
of (3.1.4), we get

o0 1 n
0 = 2 [-1 7 m]
1
=
This completes the proof.
REMARK 3.2. If n(A) = A%, then U(ﬂ = [.[—II_T-:*;)*

4 Estimation

4.1 Estimation in ML Distribution

Using the theory of geometric stable laws, Kozubowski (2001) developed pro-
cedures for estimating the parameters of ML distributions with the approach
based on fractional moments, used by Nikias and Shao (1993) for estimating sta-
ble parameters. Let e(p) = E|[Y||?, where 0 < p < a denote the pth absolute
moment of ¥ ML(a, o). By Pillai (1990), we have

: poPr
= . 4.1.1
e(p) al'(1 — p)sin(mp.a) ( )
Consider a random sample Y}, Ya,.... Y, from a M L, . distribution. Formula

(4.1.1) leads to the method of moment estimators for @ and ¢. Choose two
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values of p, say p1 and p» , replace e(pg) in (4.1.1) with its sample counterpart

A 1
épe) — = DIV, k=1,2,.

and solve the resulting equation for a and ¢. For an illustration of this pro-
cedure, see Kuzubowski (2001). Kozubowski (2001) also verfied the procedure
using simulated results and found them to be quite satisfactory even for small
sample sizes. For other methods of estimation, see Kozubowski (1999), Jacques
et al. (1999).

4.2 Estimation of 7(A)in Semi Mittag-Leffler distribution

Let Xi, X2,..., X, be a random sample of size n from SML distribution with
Laplace transform given in (3.1.1)-(3.1.2). The function
=1 D e _ (4.2.1)
L i=1 .

is called the empirical Laplace transform. We derive an estimator for n(A)using
the method of moments and is given by

1
(A) = - 1. 422
i) = 253 (422)
To study the asymptotic properties of the estimatbr , we first stud} the asymp-
totic properties of ¢,(A). Note that ¢,(A) = be M= L5 Y;, where

Y;’s are i.i.d. with Y = e~*X. Since E(gbn(k) @(A) for all A > 0, we have by
strong law of large numbers, ¢,(\) a3 @(A). It can be easily shown that the
convergence is uniform. This follows on the same lines as the uniform conver-
gence of empirical characteristic function, (see Laha and Rohatgi, 1979, p.156.).
: 1
Since 7(\) = ——
.. TI( ) ¢n(A) . )
ing the invariance principle, that (n(A)) — 7(}A) umformiy in A. Note that
Ele™*¥] = A) and Var[e %] = ¢(2X) — ¢%(\) = M()) say, 0 < M(A) < co.

Since ¢n(A) = ZY using Central Limit Theorem, it follows that
i=1

— 1 is a continuous function for all A > 0, it follows, us-

VA($a(A) — $(A)) 3 N(0, M(N)).

Using the invariance propertv of CAN estimators (see Kale, 1999 p.116), we
get

- r 1 | 1 | :
vn((n()) "71()\}? —+aN (0, (' (A)* {14—1;(2,\) B [1+ﬂ(f\)] }) '
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That is f(A), is a CAN estimator with variance given by

fry113 1 1 ?
) {1+nm - [1+an)] }

In the next Section, we will study the small sample properties of () .

4.3 Numerical Results

Here we compare the estimator with the actual value using a simulation study
when the samples are drawn from the semi-Mittag-Leffler distribution with
n(A) = A* , for specific values of a = 0.8 and 0.9 with sample sizes 30 and
50. In this study, we have taken simulation size to be 1000. The simulation
results are presented in Figures 4.3.1-4.3.4. In these figures, we have used the
notation g(s) to denote the periodic function and we have plotted the function

g(s) and the-average of the estimates of g(s) in the simulated samples, in the
interval (0,1).

[—aw

| — Esrwmats ol jis)

o3r

Gaf

02p

-

oﬂ 01 02 03 04 05 08 @7 GC3 09 1

Figure 4.3.1. Periodic Functipp and its estimate (.= 0.8, n = 30)

As is clear from the figures, the estimator performs very well for even sample
size of 30, and the performance improves as n increases. It/can be noted that
for n=>50, the average of the estimates becomes almost indistinguishable as
compared to the function itself.

5 Other related distributions

5.1 Generalized Linnik distribution

Christoph and Schreiber (2000) have defined the generalized positive Linnik
distribution as follows: ’
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Figure 4.3.3 Periodic Function and its estimate (a = 0.9,n = 30)

DEFINITION 5.1. A random random variable X on (0,00) is said to have gen-
eralized positive Linnik distribution with characteristic exponent~y € (0, 1], scale
parameter § > 0 and shape parameter 3 > 0 if it has the Laplace trunsform

¢:(’\}={ (1+6"T;-) , for0< <o (5.1.1)
exp{-dA"}, for0< 3 =oc.

If 3 =1, (5.1.1) defines the Laplace transform of the ML distribution with
corresponding distribution function 1 — E.(—z7), where E-(z) is the ML func-
tion.

In contrast, Bingham, Goldie and Teugels (1987, p.329 and p.392) defined
ML distribution as limit laws for occupation times of Markov process when
the corresponding Laplace transform E,(u) being ML function (see also Pakes,
1992b). For r = 1 well known distribution occurs; degenerate distribution at the

1 3.5 _23/5_3-1
F(ﬁ)(é) £ 7, T >

0. if 3 < oo with the special case of exponential distribution with parameter

point § if 3 = oc, gamma distribution with density
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Figure 4.3.4 Periodic Function and its estimate (a = 0.9, n = 30)

1> 0if ﬁ = 1. Lin (1994) characterized Linnik distribution throucrh closure
under geometric compounding. For properties of Linnik distribution, see also
Kotz et. al. (2001).

The relation between the generalized Linnik distributions with other distri-
butions is given in Figure 5.1.1.

Pakes(1992 a) obtained a characterization of generalized Positive Linnik law-.
For distributions related to Linnik laws, see also Remillard and Theodorescu
(2002).

Aly and Bouzar (2000} obtained the following results.

lnduh
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[hd-l-ﬂ!q-_liln

bt g \"_w-1,ﬁ #
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N v =]
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Figure 5.1.1 Relations between various classes of distributions



J. Ind. Soc. Probab. Statist. 7 2003 67

THEOREM 5.1 An R+-valued random variable X is said to be compound gamma

X g Y(T) for some R+-valued Levy process {Y(.)} and some gamma dis-
tributed random variable T, independent of {Y(.)}. The LST of a compound

1mma distribution is given by ¢(u) = —, for some ¢ > 0 and
r > 0 and some infinitely divisible LST ¢,. That is, X is compound-gamma if
and only if its LST 1s given by

N
-y (u)

‘where ¥ has completely monotone derivative with ¥(0) =0 and r > 0.
The compound exponential distribution arises as a special case of compound

gamma and corresponds to 7 = 1, in (5.1.2). Aly and Bouzar (2000) proved the
following results.

o(u) u>0 (5.1.2)

PROPOSITION 5.1. Let X be an R+ -valued random variable. The following
assertions are equivalent:

(i) X is g.i.d.

(4) Na(X) is compound geometric for all A > 0, where Ny(.) is a
Poisson process of intensity X.

(iii) X is compound ezponential.

Moreover, if the distribution of X has an atom ot 0, then the above assertions
are equivalent to

(iv) X satisfies the stability equation

x4Bx+s (5.1.3)
for some Z+ valued random variable S and some mized Bernoulli variable B
with mizing variable W taking values in (0,1) and with mean E(IV) = g i o

¢ > 0, where the random variahies X, B and § are independent.

THEOREM 5.2 Let X(.) be a R+- valued Levy process. Let ¥:(u) be a function
on R+ with a completely monotone derivative such that (0) = 0 and let a > 0.
(i) X(t) has LST

Be(u) = (1+9(u) ™
for all t > 0 if and only if X(.) can be represented as subordinated to a gamma
process T(.), in the sense that X(t) can be written in the form X(t) 4 Y[T(t),
where for all t > o, T(t) has T'(t/a,1) distribution and Y (t) is a Levy process
with LST exp {—tyr(u)}. '
(ii) Moreover, if lim v(u) < oo, then X(.) will satisfy the stability equation
u—+20

(5.1.3) and the distribution of X (a), and hence of X (t) for each t > 0, will have
an atom at 0.
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THEOREM 5.3 An R+ valued random variable X is geometrically strictly stable
if and only if its Laplace transform is given by

1
1+ cu”

o(u) =

for some 0 < ¥ < 1andc>0.

6 Concluding Remarks

In this paper, we have reviewed the ML distributions, and studied various dis-
tributional properties and characterizations related to the ML distributions. We
also studied Semi-Mittag Leffler Distributions, Generalized positive Linnik dis-
tributions and other related distributions. We also reviewed the results related
to estimation of parameters in ML distributions and proposed some new esti-
mators for the function n(A) in the SML distribution using Empirical Laplace
T:ansform. Here, we present some of the open problems related to the Mittag
Leffler distribution.

a. General inference procedures need further study. Some estimators for
parameters related to the ML distribution are available. Other general infer-
ence procedures such as testing of hypothesis, goodness of fit etc., need to be
developed.

b. As’has been noted in the paper, the ML distributions are generalizations
of Exponential distributions. The ML distribution, therefore, can be studied as
an alternative model for analyzing lifetime data. Reliability measures such as
-Failure Rate, Mean Residual Life, etc., need to be studied. Through such a study
one can establish bounds for the distribution function of the ML distribution,
which will be quite useful, as the distribution function of the ML distribution is
an infinite series. We conjecture, here, that the ML distribution represents the
negative ageing phenomenon.

¢. In Theorem 3.1.2, we have established the relation between Semi-Stable
distributions and SML distributions. If we can generate random numbers from
semi-stable distributions, we can use this result to generate random numbers
from SML distributions, which will be quite useful in simulation and other
numerical studies. However, to the best of our knowledge, generation of random
numbers from semi-stable distribution having Laplace transform e~"A)  where
n(A) satisfies (3.1.3), is not available.
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